Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(10): 7558-7569, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38420914

RESUMO

Water electrolysis is emerging as a promising renewable-energy technology for the green production of hydrogen, which is a representative and reliable clean energy source. From economical and industrial perspectives, the development of earth-abundant non-noble metal-based and bifunctional catalysts, which can simultaneously exhibit high catalytic activities and stabilities for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), is critical; however, to date, these types of catalysts have not been constructed, particularly, for high-current-density water electrolysis at the industrial level. This study developed a heterostructured zero-dimensional (0D)-one-dimensional (1D) PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF)-Ni3S2 as a self-supported catalytic electrode via interface and morphology engineering. This unique heterodimensional nanostructure of the PBSCF-Ni3S2 system demonstrates superaerophobic/superhydrophilic features and maximizes the exposure of the highly active heterointerface, endowing the PBSCF-Ni3S2 electrode with outstanding electrocatalytic performances in both HER and OER and exceptional operational stability during the overall water electrolysis at high current densities (500 h at 500 mA cm-2). This study provides important insights into the development of catalytic electrodes for efficient and stable large-scale hydrogen production systems.

2.
ACS Nano ; 17(11): 10817-10826, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37183803

RESUMO

The introduction of heteroatoms is a widely employed strategy for electrocatalysis of transition metal dichalcogenides (TMDs). This approach activates the inactive basal plane, effectively boosting the intrinsic catalytic activity. However, the effect of atomic configurations incorporated within the TMDs' lattice on catalytic activity is not thoroughly understood owing to the lack of controllable synthetic approaches for highly doped TMDs. In this study, we demonstrate a facile approach to realizing heavily doped MoS2 with a high doping concentration above 16% via intermediate-reaction-mediated chemical vapor deposition. As the V doping concentration increased, the incorporated V atoms coalesced in a manner that enabled both the basal plane activation and electrical conductivity enhancement of MoS2. This accelerated the kinetics of the hydrogen evolution reaction (HER) through the reduced Gibbs free energy of hydrogen adsorption, as evidenced by experimental and theoretical analyses. Consequently, the coalesced V-doped MoS2 exhibited superior HER performance, with an overpotential of 100 mV at 10 mA cm-2, surpassing the pristine and single-atom-doped counterparts. This study provides an intriguing pathway for engineering the atomic doping configuration of TMDs to develop efficient 2D nanomaterial-based electrocatalysts.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35839215

RESUMO

Flexible semitransparent perovskite solar cells (ST-PSCs) have great potential for use in high-density energy systems, such as building or vehicle integrated photovoltaics, considering the great features of PSC devices, including high performance, light weight, thin-film processability, and high near-infrared transmittance. Despite numerous efforts toward achieving efficiency and flexibility in ST-PSCs, the realization of high-performance and operational stability in ST-PSCs still require further development. Herein, we demonstrated the development of highly efficient, stable, and flexible ST-PSCs using polyimide-integrated graphene electrodes via a lamination-assisted bifacial cation exchange strategy. A high-quality perovskite layer was obtained through the cation exchange reaction using the lamination process, and ST-PSCs with 15.1% efficiency were developed. The proposed ST-PSC device also demonstrated excellent operational stability, mechanical durability, and moisture stability owing to the chemically inert and mechanically robust graphene electrodes. This study provides an effective strategy for developing highly functional ST-perovskite optoelectronic devices with high-performance and long-term operational stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...